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Much of mathematics aims at representing a complex mathematical object by one which is more easily

understood. This is the guiding light for my research. I am particularly interested in ways that quivers can

be used to study much more complicated objects. My current work largely deals with tilting, cluster-tilting,

and derived categories. In §1, I present the basic history and background leading to my thesis work, while in

§2, I will briefly describe some of my results and some possible immediate extensions, lastly §3, I will briefly

describe my current and future interests.

1. Background

1.1. History. In 2002, Fomin and Zelevinsky [19] introduced cluster algebras in the hopes of providing

a new algebraic framework to study Lusztig’s dual canonical basis. The original definition is elementary

but the calculations can quickly become involved. To further study cluster algebras, cluster categories and

cluster-tilted algebras were introduced in [8–10]. These categories and algebras allow us to study cluster

algebras via the representation theory of quivers. Further, by [2, 6] these algebras are closely related to the

well studied class of tilted algebras. I am interested in exploring this connection for a particular class of

cluster-tilted algebras which can be realized as triangulated surfaces (see [1,10,20]). This realization in terms

of surfaces allows for a new combinatorial description of the representation theory of these algebras.

1.2. Notation, Algebras, and Quivers. Throughout we fix an algebraically closed field k. A quiver Q is

the quadruple (Q0, Q1, s, t) of vertices, arrows, source and target functions on arrows. By a path we mean

a directed sequence of arrows in Q. To any quiver we can define the path algebra kQ. The motivation for

studying quivers in this context is that for any finite-dimensional algebra A, there is a bound quiver (Q, I)

such that the representation theory of kQ/I is equivalent to the module theory of A for some ideal I ⊂ kQ,

[4]. This equivalence allows for a description of the modules of A in terms of certain collections of vector

spaces and linear maps.

1.3. Surfaces and Triangulations. Let S be a connected, oriented, unpunctured Riemann surface with

boundary ∂S and let M be a non-empty finite subset of the boundary ∂S such that every boundary compo-

nent contains at least one point of M . The elements of M are called marked points. We will refer to the pair

(S,M) simply as an unpunctured surface. If M contains a point from the interior of S, this point is called a

puncture.

We say that two curves in S do not cross if they do not intersect each other except at the endpoints at

which they may coincide. We reserve the term arc for those non-self-intersecting curves in the interior of S

with endpoints in M . A generalized arc may have self-intersections. Each generalized arc is considered up to

homotopy inside the class of such curves. These arcs will encode information about modules of the algebra

BT which is defined below.

A triangulation is a maximal collection of non-crossing arcs, and we refer to the triple (S,M, T ) as a

triangulated surface. If T = {τ1, τ2, . . . , τn} is a triangulation of an unpunctured surface (S,M), we define a

quiver QT as in Figure 1. The vertices of QT are given by the edges τi and the arrows by the angles in each

triangle. Note that the internal triangles in T correspond to oriented 3-cycles in QT .
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Figure 1. A triangulation and its quiver
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Figure 2. A local cut at v relative to α, β. The internal triangle 4 in T becomes a
quadrilateral 4† in T †.

Definition 1. Let (S,M, T ) be a triangulated surface, as above. Define BT to be the algebra which is defined

as the quotient of the path algebra of the quiver QT by the two-sided ideal generated by the subpaths of

length two in each oriented 3-cycle of QT .

In [17], the authors associate a cluster algebra A(QT ) to this quiver; the cluster algebras obtained in this

way are called cluster algebras from (unpunctured) surfaces ( [16–18,22,23]), and the corresponding cluster

categories in [7,10]. Each triangulation of a surface corresponds to a cluster-tilted algebra or a 2-Calabi-Yau

tilted algebra. When S is a disc, QT corresponds to a cluster-tilted algebra of Dynkin type A. When S

is an annulus, we get the cluster-tilted algebras of affine Dynkin type Ã. For all other surfaces, we obtain

2-Calabi-Yau tilted algebras. I am particularly interested in the last two cases because of the following

theorem.

Theorem 2 ([6]). An algebra B with global dimension at most 2 is iterated tilted of Dynkin type Q if and

only if it is the quotient of a cluster-tilted algebra of type Q by an admissible cut.

In the situation of interest, algebras coming from triangulations of surfaces, an admissible cut is given

by removing an arrow from each oriented three cycle. I have shown how to translate this theorem into a

construction on the surface.

2. My Results

2.1. Defining Surface Algebras. Throughout this section, we assume that if S is a disc, then M has

at least 5 marked points. To translate Theorem 2 into the setting of triangulated surfaces, we define the

admissible cut of a triangulation. To that purpose, we introduce local cuts of a surface via Figure 2. This

definition can be made rigorous, but the figure gives the morally correct idea.

If the algebra B in Theorem 2 corresponds to a triangulation of a surface, its admissible cuts correspond

to a sequence of local cuts at each internal triangle of the triangulation. See Figure 3.
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Figure 3. An admissible cut in the surface and its quiver. The white marked points
indicate the local cuts. There are two local cuts in this figure, one between τ1 and τ2, the
other between τ7 and τ5.

Definition 3. A surface algebra of type (S,M) is a bound quiver algebra BT † = kQT †/IT † where (S,M†, T †)

is the partial triangulation given by a sequence of local cuts of a triangulated unpunctured surface (S,M, T ).

The ideal I† is generated by the paths of length two defined by the quadrilaterals of the partial triangulation.

Theorem 4 ([12]). If (S,M, T ) is a triangulated disc and (S,M†, T †) an admissible cut, then BT † is an

iterated tilted algebra of Dynkin type A.

The surface algebras of the disc are well-known, but we we see in Theorem 6 that this construction

provides an interesting approach to study the representation theory of these algebras. Surface algebras from

surfaces other than the disc seem to be new as they do not fit into any known classification of algebras.

However, as desired, these algebras parallel the relationship between tilted an cluster-tilted algebras seen in

[2, 6].

Theorem 5 ([12]). If (S,M†, T †) is an admissible cut of (S,M, T ) then

(a) QT † is an admissible cut of QT .

(b) The tensor algebra of BT † with respect to the BT †-bimodule Ext2
B

T†
(DBT † , BT †) is isomorphic to the

algebra BT .

The partially triangulated surfaces also provide a convenient graphical tool for presenting the modules of

these algebras.

Theorem 6 ([12]). The surface algebras are gentle. Moreover, the string modules of BT † correspond to the

generalized arcs of (S,M†, T †).

3. Future

My primary focus has been mostly restricted to the genus 0 case; these are surfaces that can be thought

of as a deformed sphere that have had at least one disc removed from it. This of course leaves most questions

involving higher genus open. In particular I have shown [11] that derived equivalence of surface algebras of

genus 0 can be determined entirely by a combinatorial method that depends only on the configuration of cuts

in the surface. This is partially achieved by calculating an invariant defined by Avella-Alaminos and Geiss

in [5] as a function of the number of marked points and the number of local cuts on a boundary component.

Using the work of [3] on graded equivalence, we can then determine derived equivalences using distribution

of the local cuts throughout the boundary components. Unfortunately, this method cannot be extended to

higher genus. In fact, a simple counter-example can be found by considering the torus with a single disc

removed. There is something significantly more complicated about the higher genus case.
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Similarly, I have so far restricted my study to surfaces without punctures. When cutting in the boundary,

we are inserting a new boundary segment. It is not clear what the corresponding action should be when

cutting at a point in the interior of the surface. These algebras are of interest because the cluster-tilted

algebras of Dynkin type D and affine D̃ are given by triangulations of once and twice punctured discs,

respectively. I currently believe that the correct analogue for a local cut at a puncture m is to introduce an

open boundary segment in the interior of S and incident to m, which we call an incision at m.

Conjecture 7. Taking the incision of a punctured surface at a puncture provides the correct combinatorial

model to describe the iterated-tilted algebras of type D.

The punctured case also presents a difficulty in that the invariant of Avella-Alaminos and Geiss [5] need

not be defined for these algebras. It is not clear if it can be easily generalized.

Beyond extensions to the punctured case, there are also the m-angulated surfaces used in describing m-

cluster categories and the corresponding m-cluster-tilted algebras. When the surface is the disc, then much

of the work in my thesis extends quite readily.

Conjecture 8. The notion of the local cuts and the calculation of the invariant of Avella-Alaminos and

Geiss can be extended for m-angulations of the disc.

However, the theory of m-angulated surfaces with more than one boundary component is not as well

established as in the triangulated case.

Beyond working with surfaces I am also interested in exploring how/if quivers can be used to detect other

invariants, such as the dimension or the radius of the module category defined in [13,14]. I have also begun

exploring the uses of quivers in mathematical physics. I am particularly interested in [15,21].

References
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